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ABSTRACT particularly in long range or recurrent selection experi-
ments (Beavis, 1994, 1997; Bulmer, 1971; Dudley, 1993;Marker-assisted selection (MAS) has been shown, in theory, to
Gimelfarb and Lande, 1994a,b, 1995; Knapp et al., 1993;produce greater selection gains than phenotypic selection for normally
Knapp, 1994b; Lande and Thompson, 1990; Lande,distributed quantitative traits. Theory is presented in this paper for
1992; Zhang and Smith, 1992, 1993).estimating the probability of selecting one or more superior genotypes

by MAS (PrMAS ). This paramater was used to estimate the cost effi- MAS should be most effective in the early generations
ciency of MAS relative to phenotypic selection (Ec). PrMAS and Ec are of selection among progeny from crosses between in-
functions of heritability (h2 ), heritability of a MAS index (h2

I ), the bred lines (Lande, 1992; Stromberg et al., 1994). Herita-
phenotypic selectionthreshold (i), the genotypic superiority threshold bilities are usually lowest (because replications are lim-
(g), and p 5 s2

M/s2
G, where s2

M is additive genetic variance associated ited and experimental units tend to be small) and linkage
with markers and s2

G is additive genetic variance. h2
I increases as p disequilibrium is greatest in these generations (Fal-

increases. Heritability can be increased to 1.0 by increasing p to 1.0;
coner, 1981). The paradox is that the power for mappinghowever, estimated marker effects ( p̂ ) and true quantitative trait
QTL decreases as heritability decreases and is lowestlocus effects (p ) must be perfectlycorrelated toachieve this in practice.
for traits where MAS has the greatest theoretical impactPrMAS increases throughout the range of p when i $ g, decreases as
(Lande and Thompson, 1990; Lande, 1992). The accu-g increases, and increases as i increases for most p. The frequency of
racy of QTL and MAS index parameter estimates cansuperior genotypes among selected progeny increases as selection

intensity increases. Ec ranged from 1.0 to 16.7 for i and g from 1.282 be low when heritability is low and samples are small
to 2.326, h2 from 0.1 to 1.0, and p from 0.0 to 1.0; thus, a breeder (Beavis, 1994, 1997; Gimelfarb and Lande, 1995). This
using phenotypic selection must test 1.0 to 16.7 times more progeny problem is not unique to early generation MAS. Early
than a breeder using MAS to be assured of selecting one or more generation phenotypic selection is seldom strongly ad-
superior genotypes. Ec increases as g or i increase and h2 decreases and vocated in crop plants despite the theoretical drawbacks
increases as p increases when i 5 g. Ec predicts that MAS substantially of delaying selection (Geiger, 1984; Snape and Simpson,
decreases the resources needed to accomplish a selection goal for a

1984; Sneep, 1977, 1984; Weber, 1984). Selection is fre-low to moderate heritability trait when the selection goal and the
quently delayed to later generations because heritabili-selection intensity are high.
ties and the statistical accuracy of progeny mean esti-
mates tend to increase as the number of replications,
generations, sites, and years of testing increase.The probability of selecting superior genotypes is Selecting in the early generations of a pedigree breed-low for low to moderate heritability (h2) traits (Rob- ing program poses special problems (Geiger, 1984;son et al., 1967; Johnson, 1989). Plant breeders cope Snape and Simpson, 1984). Seed supplies are often lim-with this problem by producing and testing progeny ited and the chance of advancing superior genotypesfrom numerous crosses, using low selection intensities, through the early generations (F2 and F3) is low for someusing replicated testing, testing advanced generations, traits. Mean performance across sites and years is oftenand using recurrent selection (either truly cyclic popula- poorly estimated from F2 and F3 phenotypic observa-tion improvement schemes or ‘‘second generation’’ tions, and these observations may be from less than

crosses between ‘‘suboptimum’’ inbred lines) (Hallauer optimum experimental units (hills or small plots). Lim-
and Miranda, 1981). Marker-assisted selection (MAS) ited resources, however, dictate either discarding a large
has emerged as a strategy for increasing selection gains fraction of lines early or delaying selection until the F4(Dudley, 1993; Lande and Thompson, 1990; Lande, or later and testing fewer progeny in the process. The
1992; Knapp, 1994a). Although the gains from marker- second strategy forces breeders to distribute resources
assisted index selection are theoretically greater than to a smaller number of progeny tested across a larger
the gains from phenotypic selection (Lande and Thomp- number of generations, sites, and years (Geiger, 1984;
son, 1990), quantitative trait locus (QTL) and MAS Snape and Simpson, 1984). The trade-off is between
index parameter estimation errors, genetic drift, and producing more accurate estimates of progeny means
disequilibrium between selected and unselected QTL versus sampling a larger number of progeny per cross.
can reduce the gains from MAS and may lead to lower Although organisms, traits, and circumstances differ
selection gains for MAS than for phenotypic selection, greatly, there are two universal sampling problems in

breeding programs. First, enough progeny must be
tested and selected to ensure that at least one has aCrop Sci. Bldg. 451C, Dep. of Crop and Soil Science, Oregon State
superior genotype (is fixed for more favorable allelesUniv., Corvallis, OR 97331. This work was funded by a grant from
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a genotypic superiority threshold selected by the paring these numbers and the cost per experimental
observation, breeders can calculate the difference inbreeder). When the heritabilities of the selected traits

are low or moderate and small samples of progeny are cost between phenotypic and marker assisted index se-
lection. Additionally, these numbers can be used as thetested, the probability of selecting an outstanding geno-

type is very low (Robson et al., 1967; Johnson, 1989). basis for planning QTL mapping and selection exper-
iments.Second, selected progeny are mixtures of inferior and

superior genotypes. The frequency of inferior genotypes
in a selected sample of progeny increases as heritability THEORY
decreases (Robson et al., 1967). The usual strategy for

Heritability of the MAS Indexsorting superior from inferior genotypes is ‘‘advanced
testing.’’ The problem with advanced testing strategies Lande and Thompson (1990) described an optimum index
is that the most outstanding genotypes are often not for selecting individuals or lines (families) for a normally dis-
selected in early generations when heritabilities are low tributed quantitative trait. This index is a weighted sum of

phenotypic and marker scores, with weights calculated as peror samples are small or both and thus are not present
an optimum selection index (Hazel, 1943; Smith, 1936). Theamong progeny selected for advanced testing.
vector of index scores for one trait is estimated by I 5 bpx 1Robson et al. (1967) described methods for estimating
bMm, wherethe frequency of superior genotypes in samples of prog-

eny (superior phenotypes) selected for normally distrib-
b 5 P21Gd 5 3bP

bM
4 [1]uted quantitative traits using phenotypic selection. This

study highlighted some of the dilemmas faced by breed-
is a vector of index weights, x is an N 3 1 vector of phenotypicers selecting for low to moderate heritability traits. First,
scores, m 5 Skâknk is an N 3 1 vector of marker scores, N isvery large samples are often needed to ensure the pres-
the number of progeny tested, âk is the additive effect of theence of one or more superior genotypes in the selected
kth marker locus, nk is the number of favorable alleles at thesample. Plant breeders seldom test enough progeny kth marker locus,

from one cross to be assured of retaining outstanding
genotypes when heritabilities are low (Johnson, 1989). bP 5

s2
G 2 s2

M

s2
P 2 s2

M

5
1 2 p

1/h2 2 pSecond, large numbers of progeny must be selected (low
selection intensities must be used) to ensure the pres- is the index coefficient for phenotypic scores,
ence of one or more superior genotypes in the selected
sample. Even when low selection intensities are used, bM 5

s2
P 2 s2

G

s2
P 2 s2

M

5
1/h2 2 1
1/h2 2 pthe most outstanding genotypes produced by a cross

might not be present in the selected sample when herita-
is the index coefficient for marker scores, s2

G is the additivebility is low and samples are small (Robson et al., 1967;
genetic variance between individuals or lines, s2

P is the pheno-Johnson, 1989). With unlimited resources, breeders typic variance between individuals or lines, s2
M is the additive

would (i) delay selection until sufficient testing had been genetic variance associated with marker loci, p 5 s2
M/s2

G is the
done to identify, with some degree of accuracy, the most proportion of the additive genetic variance associated with
outstanding genotypes from each cross and (ii) test a markers, h2 5 s2

G/s2
P is the heritability,

sufficient number of progeny to ensure the presence of
one or more superior genotypes among the selected P 5 3s

2
P

s2
M

s2
M

s2
M
4progeny.

If breeders had tools to increase heritability cost effec- is the phenotypic variance-covariance matrix,
tively, then breeding program throughputs and effi-
ciency could be greatly increased by testing fewer prog- G 5 3s2

G

s2
M

s2
M

s2
M
4eny per cross, culling inferior progeny early, and using

higher selection intensities. The problem with imple- is the genotypic variance-covariance matrix, and
menting MAS, apart from QTL parameter estimation
errors, is the cost difference between molecular marker

d 5 3dP

dM
4 5 3104and phenotypic assays for most traits. This difference

should steadily decrease as the technology advances
is the economic weight vector (Lande and Thompson, 1990).(Perlin et al., 1995; Schwengel et al., 1994; Vos et al.,

The heritability of the optimum index for two or more1996), and advances in the technology should increase normally distributed quantitative traits is
the merit of MAS as a strategy for increasing heritabil-
ity. Theory is presented in this paper for calculating (i)

h2
I 5

b9Gb
b9Pbthe heritability of a MAS index (h2

I), (ii) the probability
of selecting one or more superior genotypes by MAS

(Lin and Allaire, 1976). The heritability of the MAS index(PrMAS ), and (iii) the efficiency of MAS relative to phe- for a normally distributed quantitative trait is
notypic selection (Ec ) for normally distributed quantita-
tive traits. One of my primary aims was to compare the h2

I 5
b9Gb
b9Pb

5
s2

G

s2
P 2 s2

M

1
s2

M

s2
M 2 s2

P

1
s2

M(s2
P 2 s2

G)
s4

G 2 2s2
Gs2

M 1 s2
Ms2

Pnumber of progeny a breeder needs to test to be assured
of selecting one or more superior genotypes when using

5
1

1/h2 2 p
1

p
p 2 1/h2

1
p(1 2 h2)

h2 2 2ph2 1 p
, [2]

phenotypic or marker assisted index selection. By com-
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where b, P, and G are from Eq. [1]. The calculations shown where i 5 (i9 2 m)/sI, F(i) is the area under a standard normal
distribution below i, and i9 is the MAS index selection thresh-in this paper use Eq. [2] and apply to virtually any selection
old. This probability was found by substituting Eq. [2] for h2scheme (e.g., individual, family, or line selection) for a nor-
in Eq. [3]. The number of progeny a breeder needs to test tomally distributed quantitative trait. Although the experimen-
be 100(1 2 c)% certain of selecting at least one superiortal and genetic definitions of s2

G, s2
M, and s2

P change as breeding
genotype using MAS isschemes (e.g., individual versus family selection and pedigree

versus half-sib family selection) and experiment and environ-
ment designs (Falconer, 1981; Wricke and Weber, 1986) nMAS 5

log10(c)
log10[1 2 PrMAS(1 2 F[i])]

. [6]
change, the calculations shown in this paper depend on h2 and
p (not on the magnitudes of s2

G, s2
M, and s2

P) and can be applied The efficiency of MAS relative to phenotypic selection can
to any breeding scheme or mating design where selection on be estimated by
the MAS index can be used (Lande, 1992). All of the calcula-
tions directly compare the choice between selecting on pheno-

Ec 5 nPS/nMAS 5
log10[1 2 PrMAS(1 2 F[i])]
log10[1 2 PrPS(1 2 F[x])]

. [7]typic versus MAS index scores for samples of progeny pro-
duced by the same mating, experiment, and environment

Ec can be used to assess whether or not MAS is a cost efficientdesigns.
for a specific breeding problem by comparing the cost perSegregating populations were simulated to illustrate princi-
observation for phenotypic (cPS) and marker (cMAS ) assaysples underlying the theoretical calculations and the theoretical
along with nPS and nMAS, e.g., if the cost per observation is tenimpact of MAS on genotypic effect (Gj ) distributions. Five
times greater for MAS than for phenotypic selection (cMAS/cPShundred progeny were simulated for factorial combinations
5 10) and Ec 5 5, then phenotypic selection is twice as costof p 5 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 by h2 5 0.1, 0.2, and 0.5
efficient as MAS ((cMAS/cPS)/(nPS/nMAS) 5 10/5 5 2) evenfor a normally distributed quantitative trait (one sample was
though phenotypic selection requires five times as many prog-simulated for each h2 and p combination). Genotypic effects
eny as MAS (Ec 5 5) to achieve the same breeding goal.(Gj) and non-genotypic (Ej ) effects were simulated with the
Although nPS and nMAS depend on the assurance probabilityRANNOR function of SAS (1985) and summed to produce
(1 2 c), Ec is not affected by this variable and can be calculatedphenotypic effects (Ij 5 Gj 1 Ej). The expected variances
by varying h2, p, x, i, and g alone.supplied to the RANNOR function were calculated for each

The calculations shown in this paper were done with thep and h2 by setting s2
E 5 1 and finding s2

G with Eq. [2], where
INTEGRATE function of Mathematica (Wolfram, 1989). PrPSs2

P 5 s2
G 1 s2

E and s2
E is the non-genetic variance. Random

and PrMAS, nPS and nMAS, and Ec were calculated for factorialseed numbers were supplied to RANNOR for each sample.
combinations of three genotypic superiority thresholds (g 5
1.282, 1.645, and 2.326), three phenotypic selection thresholds

The Probability of Selecting Superior Genotypes (x 5 1.282, 1.645, and 2.326) or index selection thresholds (i 5
1.282, 1.645, and 2.326), p between 0.0 and 1.0, and h2 betweenThe probability of selecting at least one progeny with a
0.1 and 1.0. The thresholds 1.282, 1.645, and 2.326 are trunca-genotypic value (Gj) greater than g9 among progeny with tion points for the upper 10, 5, or 1%, respectively, of thephenotypic values (Xj ) greater than x9 is phenotypic, index, and genotypic distributions. The same se-
lection intensities were used for MAS and phenotypic selec-PrPS 5 Pr[(Gj . g9)|(Xj . x9)]
tion (x 5 i). nPS and nMAS were calculated with assurance
probabilities (1 2 c) of 0.80, 0.90, 0.95, 0.99 and 0.999.5

1
1 2 F(x) #

∞

x

F 3 hz 2 g

√1 2 h24dF(z), [3]

RESULTSwhere x9 is the phenotypic selection threshold, g9 is an unob-
served genotypic superiority threshold, x 5 (x9 2 m)/sP, g 5 Heritability of the MAS Index(g9 2 m)/sG, F is the standard normal cumulative distribution
function, and F(x) is the area under a standard normal distri- The heritability of the MAS index (h2

I) was calculated
bution below x (Robson et al., 1967). Robson et al. (1967) for p from 0.0 to 1.0 for 10 initial heritabilities (h2)
tabulated PrPS for several g9, x9, and h2. PrPS reduces to [1 1
F(y)]/2 for h2 5 0.5 and g 5 0, but must be numerically
integrated for other g and h2.

The number of progeny a breeder needs to test to be
100(1 2 c)% certain of selecting at least one superior genotype
using phenotypic selection is

nPS 5
log10(c)

log10[1 2 PrPS(1 2 F[x])]
, [4]

where (1 2 c) is the assurance probability. This probability
sets the number of samples greater than or equal to nPS that
should produce one or more superior genotypes, e.g., 99 out
of 100 samples greater than or equal to nPS should have one
or more superior genotypes when c 5 0.01.

The probability of selecting at least one progeny with a
genotypic value (Gi ) greater than g9 among progeny with MAS
index values (Ij ) greater than i9 is

PrMAS 5 Pr[(Gj . g9)|(Ij . i9)] Fig. 1. Heritability of the MAS index (h2
I) for p 5 s2

M/s2
G ranging from

0.0 to 1.0 and heritability (h2) ranging from 0.1 to 1.0, where s2
M

is the additive genetic variance associated with markers and s2
G is5

1
1 2 F(i) #

∞

i

F 3hIz 2 g

√1 2 h2
I
4dF(z), [5]

the additive genetic variance.
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ranging from 0.1 to 1.0 (Fig. 1). When MAS is not used, 1.0 as p increases for every h2, i, and g and rapidly
p 5 0 and the heritability of the index reduces to the reaches 1.0 for some p, h2, i, and g (Fig. 2). PrMAS in-
heritability for phenotypic selection (h2

I 5 h2 5 s2
G/s2

P) creases as selection intensity increases (i increases) for
(Fig. 1). h2

I increases as p increases when h2 , 1 and most p. The frequency of superior genotypes increases
can, in theory, be increased to 1.0 by increasing p to among the selected progeny as selection intensity in-
1.0. Most of the heritability increase produced by the creases. PrMAS decreases as the genotypic superiority
MAS index accrues between 0.0 , p , 0.5 for low to threshold (g) increases. The probability of selecting a
moderate heritability traits (0.0 , h2 , 0.7) (Fig. 1). superior genotype is greater, for example, when the goal
The effect of p on h2

I is non-linear and increases as h2 is to select a genotype from the upper 10% versus the
decreases (Fig. 1). The non-linearity and h2

I by p cross- upper 1% of the genotypic distribution.
over interaction is caused by the effects of the index PrMAS increases throughout the range of p when i 5
weights (Fig. 1). The ranges of the index weights are h2 g (Fig. 2). PrMAS increases to 1.0 as p increases to 1.0
# bP # 0 and (1 2 h2) # bM # 1 for 0 # p # 1, where when i $ g, but plateaus below 1.0 when i , g. The
bP 1 bM 5 1 (Lande and Thompson, 1990); thus, bP maximum PrMAS is [F(g)]/[F(i)]. The percentage of supe-
decreases, whereas bM increases as h2 decreases. When rior genotypes in the selected sample never exceeds this
the heritability of one trait is greater than the heritability maximum; thus, the phenotypic selection threshold (i )
of another trait and p is the same for both traits, h2

I is must be greater than or equal to the genotypic superior-
greater for the trait with the lower heritability (Fig. 1). ity threshold (g) for PrMAS to reach 1.0, e.g., when g 5

2.236 and i 5 1.282, the frequency of superior genotypes
in the selected sample cannot exceed [F(g)]/[F(i)] 5The Probability of Selecting Superior Genotypes
0.01/0.10 5 0.10 (10%). PrMAS rapidly reaches this

PrMAS plots are shown for factorial combinations of g threshold as p increases when heritability is low and
i , g (Fig. 2).and i for three heritabilities (Fig. 2). PrMAS increases to

Fig. 2. The probability of selecting one or more superior genotypes using phenotypic selection ( p 5 0) or marker-assisted index selection (p . 0)
for a normally distributed quantitative trait. Probabilities are shown for three MAS index selection thresholds, i 5 1.282 (dotted lines), i 5
1.645 (solid lines), and i 5 2.326 (dashed lines), three genotypic superiority thresholds, g 5 1.282 (upper row), g 5 1.645 (middle row), and
g 5 2.326 (lower row), and three heritabilities, h2 5 0.1 (left column), h2 5 0.2 (middle column), and h2 5 0.5 (right column), where p 5
s2

M/s2
G,s2

M is the additive genetic variance associated with markers, s2
G is the additive genetic variance, g is the genotypic standard deviation,

and i is the MAS index standard deviation.
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The frequency of superior genotypes among the se- most h2 (Fig. 3). MAS is most efficient when breeders
use high selection intensities (e.g., select progeny fromlected progeny is greater for MAS than for phenotypic

selection for most h2, p, g, and i (Fig. 2). The differences the upper 1% of the population) and set high selection
goals (e.g., require that the experiment produce at leastbetween phenotypic selection and MAS are most dra-

matic for low heritability traits, high selection intensit- one selection from the upper 1% of the genotypic distri-
bution). Selection intensity must be increased to excludeies, and high genotypic superiority thresholds. The dif-

ferences can still be dramatic for moderate heritabilities inferior genotypes when heritability is increased by us-
ing MAS. Low selection intensities must be used whenand modest selection goals.
heritabilities are low because high selection intensities
will frequently exclude the most outstanding genotypes.The Efficiency of MAS Relative

Some of the principles underlying the efficiency calcu-to Phenotypic Selection
lations are illustrated in a series of plots showing the

Efficiency plots are shown for factorial combinations genotypic and phenotypic (p 5 0) or MAS index (p .
of g and i for three heritabilities (Fig. 3). Ec ranged from 0) effect distributions for simulated segregating popula-
1.0 to 16.7 for i from 1.282 to 2.326, g from 1.282 to tions for low to moderate heritability traits (h2 5 0.1,
2.326, h2 from 0.1 to 1.0, and p from 0.0 to 1.0. Efficiency 0.2, and 0.5) (Fig. 4–6). The most outstanding genotypes
increases as h2 decreases independent of i and g and as (those with the highest genotypic values) in the samples
p increases when i 5 g (Fig. 3). The efficiency maximums for the 10 or 20% heritability traits would not be selected
for i ? g are less than for i 5 g. Setting the selection by phenotypic selection alone (p 5 0), whereas the most
intensity lower than the genotypic selection threshold outstanding genotypes in all of the MAS samples (p .
(i , g) is less efficient than setting i 5 g because the 0) would almost certainly be selected. The phenotypic
frequency of inferior genotypes in the selected fraction ranks of the top three genotypes in the phenotypic selec-
increases as i decreases (Fig. 3). Conversely, setting the tion samples were 479, 57, and 67 for h2 5 0.1 (Fig. 4),
selection intensity higher than the genotypic selection 241, 11, and 88 for h2 5 0.2 (Fig. 5), and 87, 3, and 28
threshold (i . g) is less efficient than setting i 5 g for for h2 5 0.5 (Fig. 6). The top ranking genotype would
some p because i affects the speed with which PrMAS not be selected from the sample for the 10% heritability
reaches 1.0. Ec plateaus once PrMAS reaches 1.0 (Fig. 3). trait without retesting the whole population, would only

The effect of selection intensity on Ec decreases as be selected from the sample for the 20% heritability
trait by keeping nearly 50% of the progeny for addi-the genotypic superiority threshold (g) decreases for

Fig. 3. The efficiency (Ec 5 nPS/nMAS) of marker-assisted index selection relative to phenotypic selection for a normally distributed quantitative
trait for three MAS index selection thresholds, i 5 1.282 (dotted lines), i 5 1.645 (solid lines), and i 5 2.326 (dashed lines), three genotypic
superiority thresholds, g 5 1.282 (upper row), g 5 1.645 (middle row), and g 5 2.326 (lower row), and three heritabilities, h2 5 0.1 (left
column), h2 5 0.2 (middle column), and h2 5 0.5 (right column), where p 5 s2

M/s2
G,s2

M, is the additive genetic variance associated with markers,
s2

G is the additive genetic variance, g is the genotypic standard deviation, and i is the MAS index standard deviation.
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tional testing, and would only be selected from the sam- is to select a line from the upper 1% of the genotypic
distribution and the upper 10% of the phenotypes areple for the 50% heritability trait by keeping 17% of

the progeny for additional testing. The second ranking selected, 94 to 98% of the selected progeny are inferior
when h2 ranges from 0.1 to 0.5.genotypes from the samples for the 20 and 50% herita-

bility traits, however, would be selected with high selec- The outcome of selection can be enhanced by using
a MAS index, even when only a modest proportion oftion intensities (2.0 and 0.4%, respectively).

Suppose the upper 10% of the progeny (50 of 500) the additive genetic variance is associated with markers
(Fig. 4–6). This is illustrated by the dramatic changesare selected by phenotypic selection (p 5 0). Fourteen,

eight, and one progeny are from the upper 10, 5, and in the index (phenotypic) distributions between p 5
0.0 and p 5 0.2 (Fig. 4–6). The observed heritabilities1%, respectively, of the genotypic distribution for h2 5

0.1 (Fig. 4), 12, eight, and two progeny are from the increased from ĥ2 5 0.112 for p 5 0.0 to ĥ2
I 5 0.769 for

p 5 0.2 in the samples simulated for a 10% heritabilityupper 10, 5, and 1%, respectively, of the genotypic distri-
bution for h2 5 0.2 (Fig. 5), and 20, 11, and three progeny trait (Fig. 4) and from ĥ2 5 0.184 for p 5 0 to ĥ2

I 5
0.691 to for p 5 0.2 in the samples simulated for a 20%are from the upper 10, 5, and 1%, respectively, of the

genotypic distribution for h2 5 0.5 (Fig. 6); thus, most heritability trait (Fig. 5). The genotypic ranks of the
upper 1% (5 of 500) of the progeny selected with MASof the selected progeny (30 to 49 of 50) are inferior

when progeny are selected by phenotypic scores alone index scores with p 5 0.20 were one, 8, 7, 4, and 31 for
the h2 5 0.1 trait (Fig. 4), one, two, five, 11, and 21 forand h2 ranges from 0.1 to 0.5. These examples illustrate

two problems: the most outstanding (the top ranking) the h2 5 0.2 trait (Fig. 5), and one, five, 11, 21, and 92
for the h2 5 0.5 trait (Fig. 6). The top ranking genotypesgenotypes are not selected and a significant fraction of

the progeny carried forward for additional testing are are the top ranking phenotypes in these samples and
would be selected with any selection intensity.inferior when heritabilities are low, e.g., when the goal

Fig. 4. Genotypic (Gj) and MAS index (Ij ) effects for samples of 500 progeny simulated for a trait with h2 5 0.1 for phenotypic selection (p 5
0) and marker-assisted selection (p 5 0.2 to 1.0 by 0.2). The estimated heritabilities (ĥ2) for the samples simulated using p 5 0.0, 0.2, 0.4,
0.6, 0.8, and 1.0 samples were 0.112, 0.769, 0.921, 0.967, 0.992, and 1.0, respectively.
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Fig. 5. Genotypic (Gj)) and MAS index (Ij) effects for samples of 500 progeny simulated for a trait with h2 5 0.2 for phenotypic selection
(p 5 0) and marker-assisted selection (p 5 0.2 to 1.0 by 0.2). The estimated heritabilities (ĥ2) for the samples simulated using p 5 0.0, 0.2,
0.4, 0.6, 0.8, and 1.0 samples were 0.184, 0.691, 0.875, 0.928, 0.992, and 1.0, respectively.

MAS Reduces the Resources Needed most promising crosses, then the most efficient strategy
for Progeny Testing is to concentrate resources on fewer crosses with more

progeny per cross because this increases the probabilitynPS and nMAS are affected by the assurance probability
of selecting superior genotypes (Table 1).(1 2 c). c must be chosen by the breeder (along with

The effect of p on nMAS was assessed by an assuranceg and i) when calculating nPS and nMAS. nPS and nMAS probability of 99% (Table 2). Substantially fewer prog-increase as (1 2 c) increases (Table 1). When the herita-
eny are needed for MAS (nMAS) than for phenotypicbility of the selected trait is 10%, the goal is to select one
selection (nPS) to reach the same selection goal for mostor more progeny from the upper 1% of the genotypic
p, g, i, and h2 (Table 2). nMAS rapidly plateaus for manydistribution (g 5 1.282), and the upper 10% of the
g, i, and h2, changes most dramatically in the range 0.0 ,phenotypes (i 5 1.282) are selected, twice as many prog-
p , 0.4, and does not plateau for high i and g. MASeny (203 versus 102) must be tested from each cross to
typically requires many fewer progeny than phenotypicbe 99 as opposed to 90% certain of selecting one or
selection to reach the same selection goal even when amore superior genotypes; thus, the choice of c affects
small fraction of the additive genetic variance is associ-how resources are allocated within and between crosses
ated with markers.in a breeding program (Table 1). Although the means

nPS and nMAS are profoundly affected by the goal ofand variances of crosses vary, the overall frequency of
the breeder, e.g., when progeny are selected from thesuperior genotypes in a breeding program is bound to
upper 10% of the phenotypic distribution for a traitbe similar for different resource allocation strategies
with h2 5 0.1, 71 progeny must be tested to be 80%unless a preponderance of the crosses are inferior (have
certain of selecting one or more progeny from the upperlower means and variances). Under such circumstances,
10% of the genotypic distribution, while 498 progenybreeding program resources would be disproportion-
must be tested to be 80% certain of selecting one orately allocated to inferior progeny. Most breeders dis-
more progeny from the upper 1% of the genotypic distri-tribute risk across crosses because they lack a basis for
bution (Table 1). The former requires selecting 7 of 71confidently choosing between crosses (Dudley, 1984; St.
progeny, whereas the latter requires selecting 50 of 498Martin et al., 1996). If the merits of crosses are greatly

different and there is a sound basis for choosing the progeny (Table 1). Chances are that none of the geno-
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Fig. 6. Genotypic (Gj) and MAS index (Ij ) effects for samples of 500 progeny simulated for a trait with h2 5 0.5 for phenotypic selection (p 5
0) and marker-assisted selection (p 5 0.2 to 1.0 by 0.2). The estimated heritabilities (ĥ2) for the samples simulated using p 5 0.0, 0.2, 0.4,
0.6, 0.8, and 1.0 samples were 0.475, 0.668, 0.798, 0.859, 0.974, and 1.0, respectively.

types in the first sample (7 of 71) would have genotypic efficiency than E for some i, g, p, and h2. Lande and
Thompson (1990) reported efficiencies between 1.0 andmeans 2.326sG greater than m (PrMAS · 7 5 0.032 · 7 5

0.224), but one or more (0.224 · 7 5 1.568) should have 3.2 for h2 from 0.1 to 1.0 and p from 0.0 to 1.0 for
individual selection (or family mean selection with largegenotypic means greater means 1.282sG greater than m.

The second sample of selected progeny (50 of 498) families). Ec ranged from 1.0 to 16.7 for h2 from 0.1 to
1.0 and p from 0.0 to 1.0 (Fig. 6) and was greater thanshould have 11.2 (0.224 · 50) progeny with genotypic

means 1.282sG greater than m and 1.6 (0.032 · 50) prog- E for most i, g, p, and h2. E predicts that MAS is not
cost effective when the cost of MAS is one to three timeseny with genotypic means 2.326sG greater than m; thus,

the genotypes of 49 of 50 of the selected progeny (98%) more than the cost of phenotypic selection, whereas Ec

predicts that MAS is not cost effective when the cost ofwould be inferior when the goal is to select a line from
the upper 1% of the genotypic distribution. MAS is one to 17 times more than the cost of phenotypic

selection for h2 from 0.1 to 1.0.
The efficiencies predicted by Ec or any other theoreti-DISCUSSION

cal estimate of efficiency overestimate the true effi-
Lande and Thompson (1990) used E 5 RMAS/RPS to ciency gained by MAS when the estimated marker ef-

predict the efficiency of MAS for individual or family fects (p̂) and true QTL effects (p) are not perfectly
selection, where RMAS is the gain from marker-assisted correlated. This is the reality in practice and has many
selection and RPS is the gain from phenotypic selection. causes (Beavis et al., 1991, 1994; Beavis and Smith, 1996;
The efficiency measure described in this paper (Ec ) dif- Beavis, 1994, 1997; Bulmer, 1971; Churchill and Doerge,
fers in a few ways from E. E predicts efficiency for very 1994; Davarsi and Soller, 1994, 1995; Davarsi et al., 1993;
large samples, whereas Ec predicts efficiency for finite Doerge et al., 1994; Gimelfarb and Lande, 1994a, 1995;
samples. More specifically, Ec predicts how MAS affects Jansen, 1993; Jansen and Stam, 1994; Knapp et al., 1993;
n (the minimum number of progeny a breeder needs to Knapp, 1994b; Stuber and Sisco, 1991; Stuber, 1994,
test to be assured of selecting one or more superior 1995; Weller, 1993; Xu and Atcheley, 1995; Xu, 1996;
genotypes). Ec is affected by i, g, and the i by g interac- Visscher et al., 1996; Zeng, 1994; Zhang and Smith,
tion (Fig. 3), whereas E is not (Lande and Thompson, 1992, 1993). First, significant marker effects could be
1990) (E is only affected by selection intensity when false positives. Putting selection pressure on markers
different selection intensities are used for phenotypic segregating independent of QTL (false positives) in-
and marker-assisted selection). creases genetic drift and erodes genetic variance

The underlying differences between Ec and E are (Bulmer, 1971; Gimelfarb and Lande, 1995; Zhang and
Smith, 1992, 1993). Second, non-significant marker ef-important because Ec is a more optimistic predictor of
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Table 1. The number of progeny a breeder needs to test, nPS Table 2. The number of progeny a breeder needs to test, nPS
for phenotypic selection (p 5 0) and nMAS for marker-assisted for phenotypic selection (p 5 0) and nMAS for marker-assisted
selection (p . 0), to be 100(1 2 c )% certain of selecting one selection (p . 0), to be 99% certain (1 2 c 5 0.99) of selecting
or more progeny with genotypic values greater than g9 among one or more progeny with genotypic values greater than g9
progeny with phenotypic or index values greater than x9 or i9 among progeny with index values greater than i for a normally
for a normally distributed quantitative trait. nPS and nMAS were distributed quantitative trait. nPS and nMAS were calculated using
calculated using factorial combinations of genotypic selection factorial combinations of genotypic selection thresholds (g),
thresholds (g), phenotypic or index selection thresholds (x or index selection thresholds (i), heritabilities (h2 ), where g 5
i), heritabilities (h2 or h2

I ), and assurance probabilities (1 2 c), (g9 2 m)/sG, i 5 (i 2 m)/si, and m is the population mean,
where g 5 (g9 2 m)/sG, x 5 (x9 2 m)/sP, i 5 (i 2 m)/si, m is s2

G is the genotypic variance, and s2
I is the index variance.

the population mean, s2
G is the genotypic variance, s2

P is the
pphenotypic variance, and s2

I is the index variance.
i g h2 0.0 0.2 0.4 0.6 0.8 1.01 2 c

1.282 1.282 0.1 203 68 55 50 46 44x or i g h2 or h2
I 0.80 0.90 0.95 0.99 0.999

0.2 155 77 61 53 47 44
0.5 95 79 67 58 51 441.282 1.282 0.1 71 102 132 203 305

0.2 54 78 101 155 233 0.9 57 57 56 55 52 44
0.3 45 64 83 127 192

1.645 0.1 359 109 93 90 90 900.4 38 55 71 109 163
0.2 264 124 100 91 90 900.5 33 47 62 95 142
0.5 154 128 109 97 90 900.6 29 42 54 84 125
0.9 95 95 94 93 91 900.7 26 37 48 74 111

0.8 23 33 43 65 98 2.326 0.1 1424 468 458 458 458 458
0.9 20 28 37 57 86 0.2 998 495 459 458 458 458
1.0 15 22 28 44 66 0.5 579 503 468 459 458 458

0.9 458 458 458 458 458 4581.645 0.1 125 179 233 359 538
0.2 92 132 172 264 396 1.645 1.645 0.1 614 150 118 104 96 90
0.3 74 106 138 212 319 0.2 429 177 132 111 99 90
0.4 62 89 116 179 267 0.5 229 183 150 126 106 90
0.5 54 77 100 154 231 0.9 122 121 119 116 110 90
0.6 47 67 88 135 202

2.236 0.1 463 462 461 460 458 4580.7 42 60 78 119 179
0.2 463 462 461 460 458 4580.8 37 53 69 106 159
0.5 463 462 461 460 458 4580.9 33 48 62 95 143
0.9 463 462 461 460 458 4581.0 31 45 58 90 135

2.326 2.326 0.1 7677 916 655 554 497 4582.326 0.1 498 712 927 1425 2137
0.2 4378 1151 762 605 517 4580.2 349 499 650 998 1498
0.5 1682 1208 914 714 569 4580.3 276 395 513 789 1184
0.9 689 681 668 645 600 4580.4 232 331 431 663 994

0.5 202 290 377 579 869
0.6 183 261 340 522 784
0.7 170 243 316 485 728

fects could be false negatives missed because of low0.8 162 232 302 465 697
0.9 160 229 298 458 688 statistical power. Power can be increased by increasing
1.0 161 229 299 459 688 n and other experimental variables and is affected by

1.645 1.645 0.1 214 307 399 614 920 the estimation or model fitting procedure (Jansen and
0.2 150 215 279 429 644 Stam, 1994; Knapp and Bridges, 1990; Knapp et al.,0.3 117 167 217 334 501
0.4 95 136 177 273 409 1993; Soller and Beckmann, 1990; Van Oijen, 1992;
0.5 80 114 149 228 343 Zeng, 1994). Third, when individual markers are se-
0.6 68 98 127 195 293

lected (as opposed to flanking markers), crossovers can0.7 59 84 109 168 252
0.8 50 72 94 144 217 arise between the selected markers and the underlying
0.9 43 61 80 122 184 QTL, thereby reducing some of the predicted gain1.0 31 45 58 90 135

(Gimelfarb and Lande, 1995). Fourth, when markers
2.326 0.1 803 1149 1495 2298 3448 flanking a ‘‘QTL LOD peak’’ are selected, the QTL0.2 522 746 971 1492 2239

0.3 389 556 723 1112 1668 might not reside between the selected markers. If so,
0.4 309 442 576 885 1328 crossovers can arise between the selected markers and
0.5 257 367 478 735 1102

the underlying QTL and reduce some of the predicted0.6 219 314 408 628 942
0.7 192 275 358 550 825 gain. Fifth, a QTL could be a block of linked genes
0.8 173 247 322 495 742 dispersed between and around one or more selected0.9 162 232 301 463 695

markers. These linkage blocks can undergo recombina-1.0 160 229 297 457 686
tion, thereby producing genotypes fixed for favorable2.326 2.326 0.1 2683 3839 4994 7677 11 515

0.2 1530 2189 2848 4378 6567 and unfavorable alleles and reducing the predicted gain.
0.3 1038 1485 1931 2969 4454 Sixth, sampling biases for unmapped QTL can produce
0.4 763 1092 1420 2183 3275

misleading estimates of QTL effects, some of which lead0.5 588 841 1093 1682 2522
0.6 466 666 867 1332 1998 to false positives or false negatives (Knapp et al., 1993).
0.7 375 536 697 1072 1608 Finally, because markers linked to QTL can be rapidly0.8 303 433 563 866 1299

fixed, disequilibria are often produced between selected0.9 241 345 449 689 1034
1.0 160 229 298 458 687 QTL and unselected QTL underlying the residual poly-

genic variance (Bulmer, 1971).
Despite these pitfalls, many of the QTL reported in
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empirical studies, particularly among progeny from maximum PrMAS for a specific h2 and g (Fig. 2), but is
ill advised from an efficiency standpoint (Fig. 3). Third,crosses between inbred lines, are undoubtedly bona fide

(Beavis et al., 1991, 1994; Beavis and Smith, 1996; Dud- resources should be concentrated on the most promising
crosses if there is a sound basis for choosing crosses.ley, 1993; Hayes et al., 1996; McCouch and Doerge,

1995; Oziel et al., 1996; Stuber, 1992, 1994, 1995; Stuber There is more merit to testing a large number of progeny
per cross from a small number of crosses as opposed to aand Sisco, 1991; Stuber et al., 1992; Tanskley, 1993;

Tanksley et al., 1989). The most efficient strategy should small number of progeny per cross from a large number
crosses, primarily because the accuracy of QTL andbe to use very stringent significance thresholds (Doerge

et al., 1993), in addition to rigorously estimating the MAS index parameter estimates increases and the prob-
ability of selecting an outstanding genotype increasesparameters using multilocus methods for linked and

unlinked QTL (Jansen and Stam, 1994; Knapp et al., as n increases (n decreases as the number of crosses
increases for a fixed number of experimental units).1993; Knapp, 1994b; Martinez and Curnow, 1992;

Visscher et al., 1996; Zeng, 1994). The goal is to produce Choosing crosses, however, is not a trivial problem.
Methods have been developed for choosing parents forthe most accurate estimate of p for a particular data

set, even if p falls well short of 1.0, so that selection crosses for enhancing the parents of single-cross hybrids
(Dudley, 1984, 1987; Gerloff and Smith, 1988a,b); how-pressure is only put on bona fide QTL. Knapp and

Bridges (1990) showed that p̂ 5 1 can be achieved with ever, much less work has been done on this problem
in self-pollinated crops (Panter and Allen, 1995a,b; St.any balanced data set and many unbalanced data sets by

randomly selecting markers until the between progeny Martin et al., 1996).
degrees of freedom are used up. This can only be done
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